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ABSTRACT 

This article presents the vibration of a single-layered graphene sheet resting on an elastic foundation by using 

nonlocal first-order shear deformation theory. Equations of motion for a simply-supported graphene sheet are obtained via 

a nonlocal shear deformation theory. Effects of nonlocal parameter as well as length of graphene sheet, mode numbers, 

three-parameter of foundation and thermal parameter are discussed. A comparison example is presented to show the 

accuracy of the present results. 
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INTRODUCTION 

Vibration analysis of nanoplates using the nonlocal theory of elasticity [1-4] is the main subject of research works 

in recent years. The single-layered graphene sheet (SLGS), or double-layered graphene sheet (DLGS), or multi-layered 

grapheme sheet (MLGS) has high resistance and unique properties. So, all of them are used for manufacturing of many 

devices such as oscillators, clocks and sensor devices. Sakhaee-Pour et al. [5] presented vibration analysis of SLGSs by 

using a molecular structural mechanics method. Pradhan and Phadikar [6] studied the nonlocal vibration of SL and DL 

nano-plates via classical plate theory (CPT) and first-order shear deformation plate theory (FSPT). Ansari et al. [7] 

investigated the vibrational behavior of a SLGS via FSPT and differential equations are solved by using generalized 

differential quadrature method for various boundary conditions. Pradhan and Kumar [8] presented the vibration analyses of 

an orthotropic SLGS using the CPT and solved the governing equations of motion by using differential quadrature method. 

Satish et al. [9] presented thermal vibration analyses of orthotropic nanoplates based on nonlocal continuum mechanics for 

small scale effects. Shen et al. [10] used Galerkin’s method to present the vibration analysis of a SLGS based                       

nano-mechanical sensor via nonlocal Kirchhoff plate theory. 

Most of nanostructures are resting on two-parameter elastic foundation. Ansari et al. [11, 12] studied the vibration 

analysis of a MLGS using the FSPT according to Winkler-type foundation. Murmu and Adhikari [13] investigated the 

nonlocal vibration of bonded double nanoplate systems according to Winkler-type foundation. Wang et al. [14] used the 

nonlocal theory to derive the nonlinear governing equations for double-layered nanoplates subjected to four different 

boundary conditions according to Winkler-type foundation. Behfar and Naghdabadi [15] presented nano scale vibration 

analysis of a MLGS embedded in elastic medium. Chien et al. [16] investigated nonlinear vibration of laminated plates 

resting on a nonlinear elastic medium. Liew et al. [17] proposed a continuum-based plate model to study the vibration 

behavior of MLGSs that are embedded in an elastic matrix. 
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Pradhan and Murmu [18] employed nonlocal plate theory and used DQM for vibration analyses of nano-SLGSs 

embedded in elastic medium. Pradhan and Kumar [19] presented vibration analysis of orthotropic SLGS embedded in 

Pasternak’s elastic medium. 

The natural vibration frequency of a SLGS resting on a two-parameter Pasternak’s foundation [20-24]                        

is investigated in the present article. The nonlocal elasticity theory via the first-order shear deformation theory is presented. 

The differential governing equations are derived and their solution is analytically presented for a simply-supported SLGS. 

The effects of nonlocal index, two-parameter foundation on the natural vibration frequencies are illustrated. A comparison 

with the literature is presented and benchmark results are plotted for sensing the effect of all used parameters. 

BASIC EQUATIONS 

Let us consider a SLGS resting on elastic foundation and subjected to uniform load. The SLGS is of length �, 

width �	and uniform thickness ℎ	as shown in Figure 1. The SLGS is made of a homogeneous isotropic and linearly elastic 

material with Young’s modulus of elasticity �, Poisson’s ratio	�, shear modulus � and material density �. 

 
Figure 1: A Continuum Plate Model of a Single-Layered  

Graphene Sheet Resting on Elastic Foundation 

The displacements		
 of a SLGS according to the FSPT are expressed as 

.
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in which		�, 	�, and 	� are the displacements in the 
, �, and � directions;		 and � are in-plane displacements 

while � denotes transverse displacement (deflection);		� and � are rotational displacement about �- and 
-axes, 

respectively. 

The strain-displacement equations of elasticity are given by 

���������� =
!"#
"$ %&%�%'%�%'%� + %&%�(")

"* + �
!"#
"$ %+%�%,%�%-%� + %+%�(")
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The constitutive equations of an isotropic SLGS according to the nonlocal elasticity can be expressed as 

67�� − 9:�7��7�� − 9:�7��; = <�=>? @1 �� 1B 0������1,						2
7�. − 9:�7�.7�. − 9:�7�.7�� − 9:�7��

4 = � ���.��.��� ,																																																																										(3) 
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where 9 = ��CD�� represents the nonlocal index in which the parameter �	denotes an internal characteristic length 

and CD	denotes a material constant determined experimentally. 

Hamilton’s principle is used here to obtain the equations of motion as 

E 0E E F� %?&G%H? I	J + 7��I��� + 7��I��� + 7��I��� + 7�.I��. + 7�.I��.K dMN d�O/�=O/� QH?HR   

Q− E ST − UVWI�	dMN 1 d� = 0,																																																																																																																																																			(4) 

where T is the transverse distributed load and	UV		is thetwo-parameter Pasternak’s foundation 

UV = �X� − X�:���,																																																																																																																																																																				(5) 

in which	:� is the Laplacian, X� is the linear Winkler’s modulus and		X�	denotes Pasternak’s (shear) foundation 

modulus. 

Integrating the displacement gradients in �J
 by parts in Eq. (4) to obtain the governing equations in the form 

(setting T = 0) 

%YZZ%� + %YZ[%� = \D %?&%H? + \� %?+%H? ,
%YZ[%� + %Y[[%� = \D %?'%H? + \� %?,%H? ,

%]Z%� + %][%� − �X� − X�:��� = \D %?3%H? ,
%^ZZ%� + %^Z[%� − _� = \� %?&%H? + \� %?+%H? ,
%^Z[%� + %^[[%� − _� = \� %?'%H? + \� %?,%H? ,

																																																																																																																																						(6) 

where	\
 	denote mass moments of inertia defined by 

\
 = E 	��
d�O/�=O/� .                                                                                                                                                      (7) 

and ̀ J
, aJ
, and _J 	denote basic components of stress resultants, stress couples and shear stress resultants.                 

They can be obtained by integrating Eq. (3) over the thickness of the SLGS as 

b J̀
 , aJ
 , _Jc = E b7J
 , �7J
 , d7J.cd�O/�=O/� ,						e, f = 
, �,																																																																																																									(8) 

d is the transverse shear correction factor. After using Eqs. the above stress resultants can be written in terms of 

the displacements as 
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6_� − 9:�_�_� − 9:�_�; = d�ℎ 2� + %3%�� + %3%�
4,                                                                                                                          (11) 

where i = <Oj
����=>?�	represents bending rigidity of the SLGS. 

The substitution of Eqs. (9)-(11) into Eqs. (6) yields the following nonlocal partial differential equations of motion 

in terms of displacements 

i F%?&%�? + �k>� %?'%�%� + �=>� %?&%�?K = O?
�� �1 − 9:�� F\D %?&%H? + \� %?+%H?K,                                                                           (12) 

i F�=>� %?'%�? + �k>� %?&%�%� + %?'%�?K = O?
�� �1 − 9:�� F\D %?'%H? + \� %?,%H?K,																																																																																						(13) 

d�ℎ F%+%� + %,%� + :��K − �1 − 9:���X� − X�:��� = \D�1 − 9:�� %?3%H? ,																																																																						(14) 

i F%?+%�? + �k>� %?,%�%� + �=>� %?+%�?K − d�ℎ F� + %3%�K = �1 − 9:�� F\� %?&%H? + \� %?+%H?K,																																																									(15) 

i F�=>� %?,%�? + �k>� %?+%�%� + %?,%�?K − d�ℎ F� + %3%�K = �1 − 9:�� F\� %?'%H? + \� %?,%H?K																																																											(16) 

NONLOCAL VIBRATION FREQUENCIES 

The determination of natural frequencies is of fundamental importance in design of many nano-structures.                

The assumed form of displacement components is expressed as 

�l	, �m�l�, �m = 2lℎ	∗, �∗m cos�rs
� sin�vw��ℎ�∗ sin�rs
� sin�vw��lℎ�∗, �∗m sin�rs
� cos�vw��4 eyzH ,																																																																																																															(17) 

where { represents the natural frequency for the SLGS; 	∗, �∗, �∗, �∗ and �∗ are arbitrary parameters; 

		λs = }~/� and vw = �~/� in which } and � are the wave numbers; and i = √−1. 

The substitution of the solution given above into equations of motion, for constant density, yields: 

i Frs� + �=>� vw�K 	∗ + �k>� irsvw�∗ = �Oj
�� {��1 + 9�rs� + vw���	∗,																																																																													(18) 

�k>� irsvw	∗ + i F�=>� rs� + vw�K �∗ = �Oj
�� {��1 + 9�rs� + vw����∗,																																																																													(19) 

.d�ℎ�rs� + vw���∗ + �1 + 9�rs� + vs� ���X� + �rs� + vs� �X���∗ 

+d�rs�∗ + d�vw�∗ = �ℎ{��1 + 9�rs� + vs� ���∗,																																																																																																							(20) 

d�ℎ�rs�∗ + @i Frs� + �=>� vw�K + d�ℎB �∗ + �k>� irsvw�∗ = �Oj
�� {��1 + 9�rs� + vw����∗,																																(21) 

d�ℎ�vw�∗ + �k>� irsvw�∗ + @i F�=>� rs� + vw�K + d�ℎB �∗ = �Oj
�� {��1 + 9�rs� + vw����∗.                             (22) 

The above equations of motion may be written in terms of displacement parameters �∗, �∗, and �∗ only as 

���� − {��U��l�m = l0m,																																																																																																																																																										(23) 
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where l�m = l�∗, �∗, �∗m� is the solution vector. The non-vanishing elements of the symmetric matrices ���	and �U� are expressed as: 

.��� = d�ℎ��rs� + vw�� + ℎ��1 + 9�rs� + vs� ���X� + �rs� + vs� �X��, 

.��� = d�ℎ�rs�∗, 

.��� = i Frs� + �=>� vw�K + d�ℎ, 

.��� = d�ℎ�vw�∗, 

.��� = �k>� irsvw,	 

.��� = i F�=>� rs� + vw�K + d�ℎ, 

.U�� = �ℎ�{��1 + 9�rs� + vs� ��, 
U�� = U�� = �Oj

�� {��1 + 9�rs� + vw���.																																																																																																																																	(24) 

The frequency equation for the SLGS is given by setting |��� − {��U�| = 0 to get 

��{� − ��{� + ��{� − �D = 0,																																																																																																																																											(25) 

in which 

.�D = ���������� − ���� � − ���������� − ������� − ���������� − �������, 

.�� = U��������� − ���� � + U��������� − ���� � + U��������� − ���� �, 

.�� = ����U�� + ���� + ����U���U��, 
�� = U��U��� .																																																																																																																																																																															(26) 

NUMERICAL RESULTS AND DISCUSSIONS 

In this section the properties of graphene sheet are considered as [6]: modulus of elasticity	� = 1.02	TPa, 

Poisson’s ratio ν = 0.16 and material density � = 2250	kg/m�. It is assumed, except otherwise stated,                                

that	� = � = 10	nm and ℎ = 0.34	nm. Here, the fundamental vibration frequency (} = � = 1) is firstly compared with 

the corresponding ones in the literature [6, 8, 10, 19]. For this purpose, the frequency ratio ({� = {��/{�) is considered 

where {�� represents the ftrequency calculated using nonlocal theory while {� represents the ftrequency calculated using 

local theory. The comparison of vibration frequency ratio of nonlocal square SLGS is reported in Table 1. An excelent 

agreement is appeared and the present ratio is the same as those presented in the literature. 

Now, let us consider additional examples to put into evidence the effect of length	�, the foundation parameters X�	and X�	and the nonlocal index on the vibration of the present SLGS. It is to be noted that, we can get the local thermal 

vibration of the SLGSs by setting 9 = 0 in the preceeding equations. 
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Table 1: Comparison of Fundamental Vibration Frequency Ratio	�	�of  
Nonlocal Square SLGS (� = � = � 	¡¢ and	£ =  . ¤¥	¡¢) ¦	�¡¢§� Present [6] [8] [10] [19] 

0 1 1 1 1 1 
1 0.91386 0.9139 0.9139 0.9139 0.9139 
2 0.84673 0.8467 0.8466 0.8467 0.8468 
3 0.79251 0.7925 0.7926 0.7925 0.7926 

 

 

Figure 2: Fundamental Frequency Ratio of a SLGS Vs Nonlocal  
Index and its Length (� = � ¡¢, £ =  . ¤¥¡¢,	¨� =  , ̈ § =  ) 

 

Figure 3: Natural Frequency Ratio of a Square SLGS Vs Nonlocal  
Index (� = � = � ©¢, £ =  . ¤¥©¢, ª = �, ̈ � =  , ̈ § =  ) 

 

Figure 4: Fundamental Frequency Ratio of a Square SLGS Vs Nonlocal  
Index and Winkler’s Parameter (£ =  . ¤¥¡¢,	� = � = � ¡¢,	¨§ = «) 
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Figure 5: Fundamental Frequency Ratio of a Square SLGS Vs Nonlocal  
Index and Pasternak’s Parameter (£ =  . ¤¥	¡¢, � = � = � 	¡¢,	¨� = � ) 

Figure 2 shows the fundamental frequency ratio {� vs nonlocal index 9	for different values of the length � of the 

SLGS without elastic foundation (X� = X� = 0). The frequency ratio {� increases as � increases and as 9 decreases.               

The maximum fundamental frequency ratio occurs when 9 = 0. Figure 3 shows the natural (} = 1 and � = 1,2,3,4) 

frequency ratios	{� vs nonlocal index	9 of the SLGS without elastic foundation (X� = X� = 0). The natural frequency ratio {� increases as �	decreases. 

Figures 4 and 5 show the fundamental frequency ratio {� of a square SLGS vs nonlocal index 9	for different 

values of Winkler’s parameter X� and Pasternak’s parameter X�, respectively. Once again, the fundamental frequency ratio {� increases as 9 decreases. The maximum frequency ratio occurs when 9 = 0 and for all values of X� and X�. The 

frequency ratio is increasing with the increase of Winkler’s parameter		X�	and Pasternak’s parameter X�. 

 

Figure 6: Fundamental Frequency Ratio of a Square SLGS Vs  
Pasternak’s Parameter (£ =  . ¤¥	¡¢, � = � = � 	¡¢, ¦ =1) 

 

Figure 7: Fundamental Frequency Ratio of a Square SLGS Vs  
Winkler’s Parameter (£ =  . ¤¥	©¢, � = � = � 	©¢, ¦ =1) 
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The plots of fundamental frequency ratio {� of a square SLGS vs the elastic foundation parameters X� and X� are 

appeared in Figures 6 and 7. The frequency ratio is independent of X� for small values of 	X�. For constant values of X� the 

frequency ratio is increasing as X� increasing (Figure 6). Also, for constant values of X� the frequency ratio is rapidly 

increasing as X� increasing (Figure 7), especially in the range 	8 < X� < 14. 

CONCLUSIONS 

The nonlocal vibration frequencies of a single-layered graphene sheet resting on two-parameter Pasternak’s 

foundation are investigated. The local-to-nonlocal vibration frequency ratios are compared well with the corresponding 

results in the literature. The fundamental and natural frequency ratios are presented to serve as benchmarks for future 

comparisons. It can be observed some novel phenomena from the discussion of the results. The results are very sensitive to 

the variation of nonlocal index. The inclusion of two-parameter Pasternak’s foundation is very pronounced. The maximum 

frequency ratio occurs when neglecting the nonlocal index. 
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